Biologische Membranen

Stand 20.11.2020

Funktion

Wasserlösung außerhalb der Zelle Erlaubt definierten
Stoffen einzudringen
(und anderen die Zelle zu verlassen)

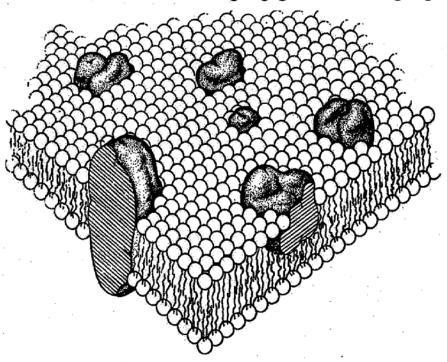
Reagiert auf Veränderungen der Umgebung Trennt Lösungen und hält Stoffe außerhalb

- 4. Physik der biologischen Membranen
- 4.1 Struktur, hydrophobe Wechselwirkungen, Fluidität

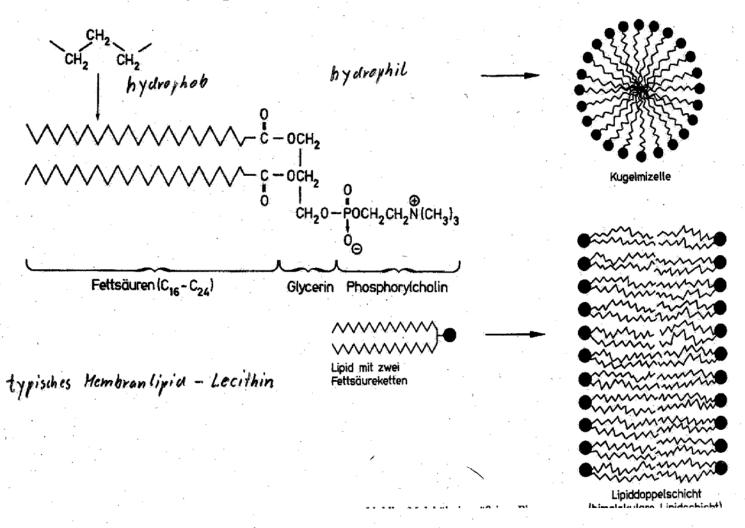
flüssig-kristalliner Zustand: + höhere Diffusionsgeschwindigkeiten,

+ Beweglichkeit von Proteinmolekülen,

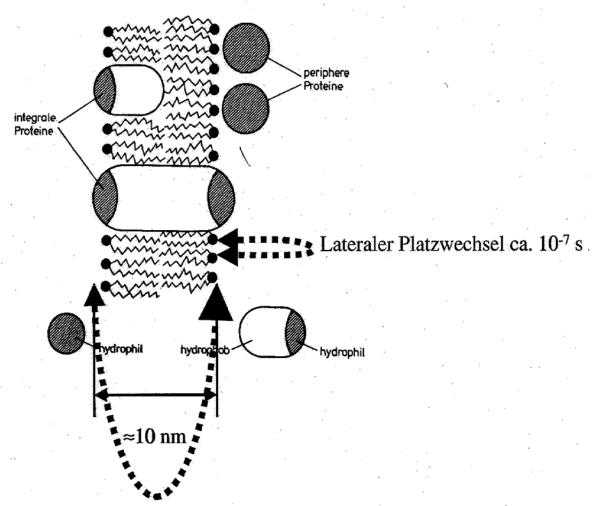
+ Homoviskositäts-Prinzip: Regelung des Membranzustandes durch Kopfgruppen, Sättigungsgrad, Verzweigung, cis/trans



- 4. Physik der biologischen Membranen
- 4.1 Struktur, hydrophobe Wechselwirkungen, Fluidität



- 4. Physik der biologischen Membranen
- 4.1 Struktur, hydrophobe Wechselwirkungen, Fluidität



Transversaler Platzwechsel ca. 1 h

- 4. Physik der biologischen Membranen
- 4.2 Transport durch Membranen
- 4.2.1 Diffusion

$$\Phi = P_d \left(C^I - C^{II} \right) = P_d \Delta C$$

Φ Fluβdichte = J/A mol cm⁻² s⁻¹

J Fluß = $dn/dt \mod s^{-1}$

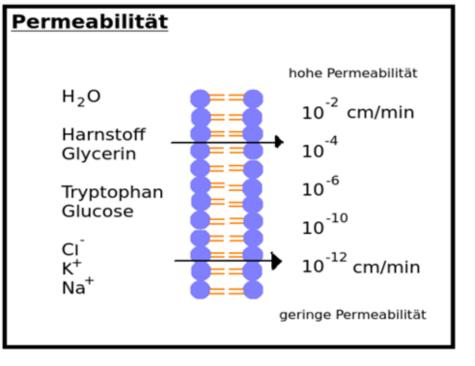
P_d Permeabilitätskoeffizient molem s -1

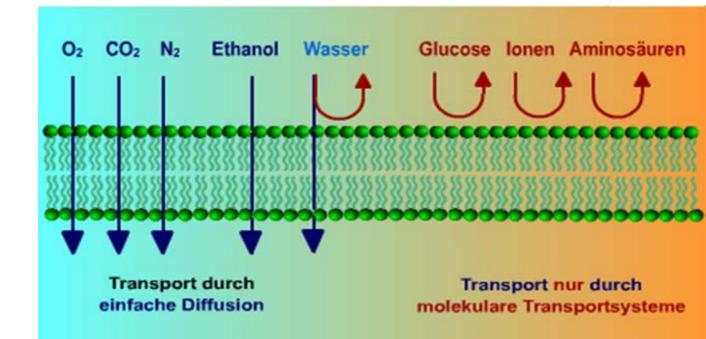
gut gültig für lipidlösliche Stoffe wie: Chloroform, Ethanol, Ether, (H_2O) usw.

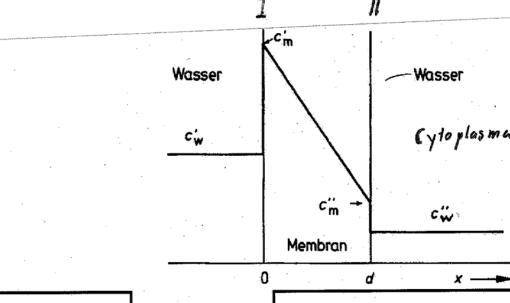
ungültig für geladene Teilchen wie: Ionen oder Stoffe mit vielen Wasserstoffbrückenbindungen zu Wasser wie: Zucker

quantitative Beschreibung:

- Membran als homogener Flüssigkeitsfilm verstanden
- schnelle Einstellung des Verteilungsgleichgewichtes an der Membran







$$\gamma = \frac{C_m^I}{C_w^I} = \frac{C_m^{II}}{C_w^{II}}$$
 | Nernstscher
| Verteilungssatz

$$\gamma = \frac{C_m^I}{C_w^I} = \frac{C_m^{II}}{C_w^{II}} \quad \text{Nernstscher}$$

$$\text{Verteilungssatz} \quad \frac{dn}{dt} \frac{1}{A} = \Phi = -D \frac{dC}{dt} = -D \frac{C_m^{II} - C_m^I}{d} \quad \text{1. Ficksches Gesetz}$$

$$\frac{dn}{dt} \cdot \frac{1}{A} = \Phi = -\gamma \cdot D \cdot \frac{C_w^{II} - C_w^{I}}{d} = P_d \cdot \left(C_w^{II} - C_w^{I}\right) \qquad P_d = \frac{\gamma D}{d}$$

$$P_d = \frac{\gamma D}{d}$$

4.2.2 Flußkopplungen (irreversible Thermodynamik)

unabhängige Flüsse, ideal

$$\Phi_A = P_A \Delta C_A$$

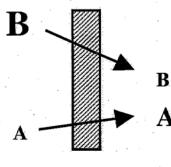
$$\Phi_B = P_B \Delta C_B$$

gekoppelte Flüsse, real

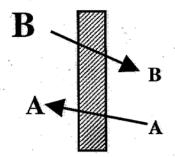
$$\Phi_A = P_{AA} \Delta C_A + P_{AB} \Delta C_B$$

$$\Phi_B = P_{BB} \Delta C_B + P_{BA} \Delta C_A$$

$$\Phi_{A} = \left(P_{AA} - \frac{P_{AB} \cdot P_{BA}}{P_{BB}}\right) \Delta C_{A} + \frac{P_{AB}}{P_{BB}} \cdot \Phi_{B}$$



Positive Flußkopplung (3. B. Transport durch Poren)

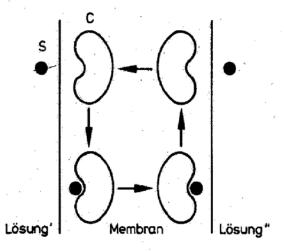


Negative Flußkopplung

4.2.3 Carriersysteme

Besonderheiten:

a) hohe Spezifität

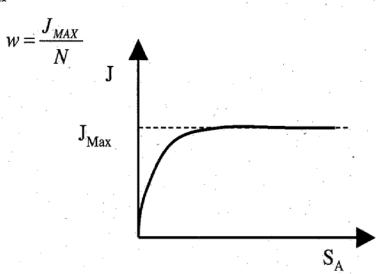


b) Sättigungskinetik anlog zu Enzymen

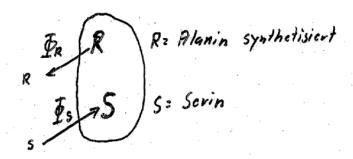
Wechselzahl:

Vanilomycin/K+Carrier: 10 4 s -1

andere ca. 100 s⁻¹



c) negative Flußkopplung möglich Beispiel: #5 bei Strepto hohken

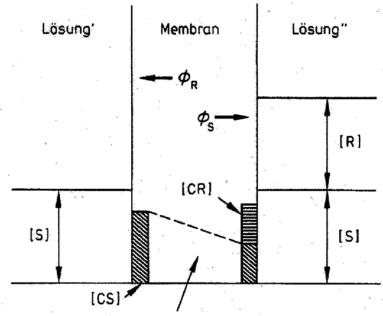


4.2.4 Transport durch Kanäle

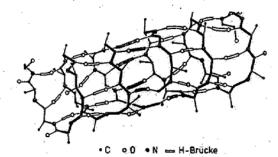
Besonderheiten:

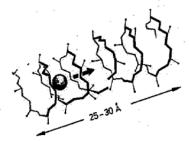
a) höhere Transportraten:

Na+-Kanal bei Nervenleitung 10⁷ Na+ s⁻¹



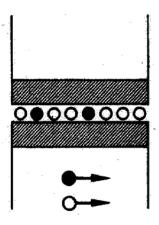
Konzentrationsgradient für CS



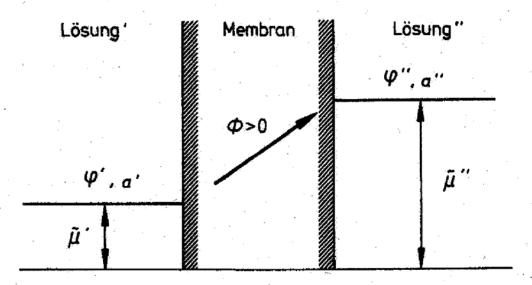


b) pos. Flußkopplungen:

₹. B. No tund H20



4.2.5 Aktiver Transport (Transport entgegen dem Gefälle des elektrochemischen Potentials)



"Kosten" des Transportes:
$$\Delta G = \Delta \tilde{\mu} = \tilde{\mu}^I - \tilde{\mu}^{II} = RT \ln \left(\frac{a^I}{a^{II}} \right) + zF(\varphi^I - \varphi^{II})$$

"Bezahlung" des Transportes:

a) primär:

ATP-Hydrolyse, Licht oder Redoxenergie (primärer aktiver Transport)

b) sekundär:

"Bezahlung" des Transportes:

b) sekundär: energetisch bergauf (R) verbunden mit energetisch bergab (S)

pro Zeit- und Flächeninhalt der Membran ist aufzuwenden:

$$\Delta G_{G} = -(\Phi_{G}\Delta \tilde{\mu}_{G}) > 0$$

der Gesamtprozess läuft nur wenn:

 $\Delta G = -\left(\Phi_{G}\Delta\tilde{\mu}_{G} + \Phi_{N_{A}}\Delta\tilde{\mu}_{N_{A}}\right) < 0$ In Glucose molikul ein Na† Jon $\bar{\Psi}_{G} : \bar{\Psi}_{Na}^{\dagger}$ $\Delta \tilde{\mu}_{G} + \Delta \tilde{\mu}_{Na}^{\dagger} > 0$

Beipiel:

maximale Effizienz folgt aus ΔG <0:

$$\frac{G_i}{G_A} < \frac{Na_a^+}{Na_i^+} \dot{e}^{F(\varphi_i - \varphi_a)/RT}$$

angenommen:
$$\frac{Na_a^+}{Na_i^+} = 10$$
 und $\varphi_i - \varphi_a = -60 \, mV$ dann $\frac{G_i}{G_A} < 100$

Natrium-Kalium-Pumpe:

Problem: Prozeß kommt zum Stehen sobald Na+ Spiegel auf ein best. Niveau gestiegen ist.

? Regeneration des Natrium-Gradienten: Abb. 9.40. Reaktionsmodell der Na,K-Pumpe. In Konformation E₁ sind die Ionen-Na3. E1. ATP P-E2 Na3 bindungsstellen nach innen (zum Cytoplasma hin), in Konformation E2 nach au-3Na 3Na ßen orientiert P-E2 E1 ATP 2Ki [Nat] E·K₂ innen extrazellular Cytoplasma außen

- 4.2.6 Chemiosmotische Theorie der oxidativen Phosphorylierung und Photophosphorylierung
- 2 Wege der Energiegewinnung:

Substratkettenphosphorylierung: überwiegende bei Gärungen z.B.

$$C_6H_{12}O_6 + 2 \text{ ADP} + 2 P_1 \longrightarrow 2 C_2H_5OH + 2 CO_2 + 2 ATP$$

$$(PEP + ADP + P_i ---> Pyruvat + ATP)$$

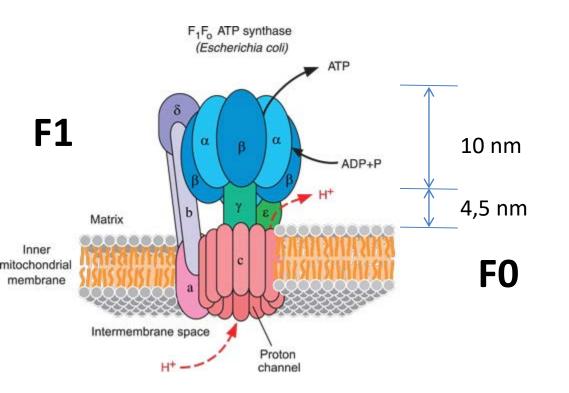
Elektronentransportphosphorylierung

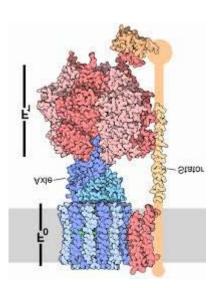
NADH +
$$H^+$$
 + $1/2$ O_2 = NAD⁺ + H_2O verknüpft mit ADP + P_i ---> ATP chemiosmotische Kopplung (Mitchell)

- * chemische Energie Redox-Reak. ---> gespeichert als elektrochemisches Potential von H+
- * dieses Potential treibt die ATP-Synthese
- * Atmungskette, Redoxreaktion pumpen H+ heraus (10 H+ / 1 NADH)
- * H+ transportierende ATPase koppelt die Aufnahme von 3 H+ mit der Synthese von 1 ATP

bei Bakterien P/O ca. 2

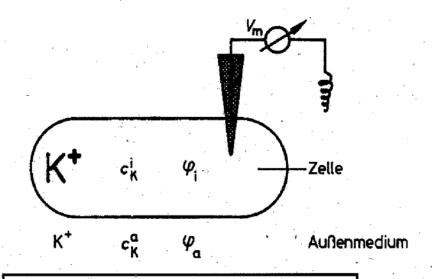
ATP - Synthase





4.2.7 Membranpotentiale, Goldman-Gleichung

(Ableitung aus der Nernst-Gleichung)



$$V_{m} = \Delta \varphi = \frac{RT}{F} \ln \left(\frac{\sum P_{+} c_{+}^{a} + \sum P_{-} c_{-}^{i}}{\sum P_{+} c_{+}^{i} + \sum P_{-} c_{-}^{a}} \right)$$

Goldman-Gleichung

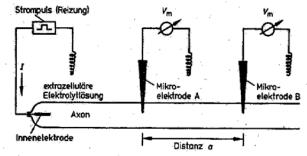
(Ableitung aus der Nernst-Gleichung)

4.3 Elektrisch erregbare Membranen

(Beispiel Axon von Tintenfischen)

Konzentration in mM Axonplasma extrazellulär	Na+	K ⁺ 400 10
	50	
	460	

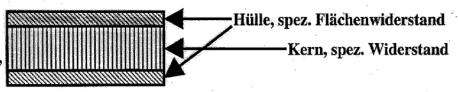
Ruhepotential: $V_m = \phi_{innen} - \phi_{außen} = -60 \text{ mV}$ aus Goldmann-Gleichung folgt $P_K/P_{Na} = 15$



Reizleitung ca. 50 m/s

Paradoxon:

Wäre ein Axon ein elektrischer Leiter,

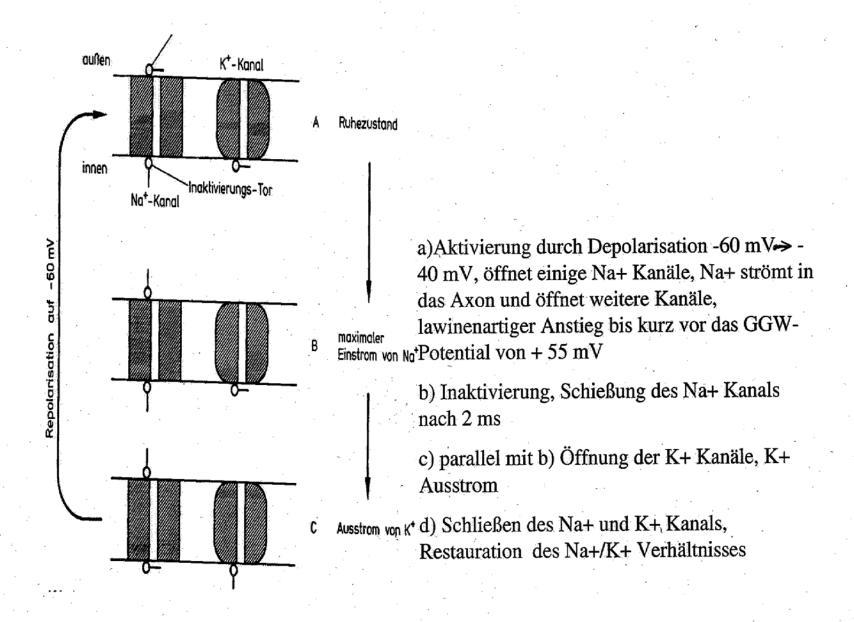


dann Spannungsverlust:

$$V = V_0 e^{-x/l}$$

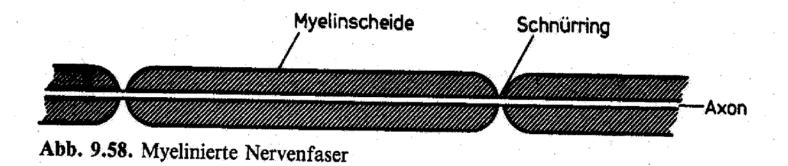
mit Längskonstante 1:
$$l = \sqrt{\frac{r R_{Mantel}}{2 R_{Innen}}}$$

mit r=0.25 mm, R_{mantel} =700 Ω cm² R_{innen} = 30 Ω cm wäre V schon nach 5 mm auf den e-ten Teil abgefallen. Real bleibt das Potential aber über mehrere Zentimeter konstant?



schnelle Reizleitung:

Erregung springt von Schnürring zu Schnürring, dazwischen wie elektrisches Kabel



Vorteil:

- schnellere Reizleitung dünnere Nerven fasorn

